This article was downloaded by:
On: 16 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Liquid Crystals Today

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713681230

Liquid Crystals Today

To cite this Article (1997) 'Liquid Crystals Today', Liquid Crystals Today, 7: 4, 1
To link to this Article: DOI: 10.1080/13583149708047683
URL: http://dx.doi.org/10.1080/13583149708047683

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


NEWSLETTER OF THE INTERNATIONAL LIQUID CRYSTAL SOCIETY

Liquid Crystals
 Volume 7, No. 4, December 1997
 SSN: 1358-314X

Morphology Development in Liquid-Crystal/ Polymer Mixtures

Andrea J. Liu

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA

Dispersions of a small amount of polymer in a liquid crystal matrix (polymer-stabilized liquid crystals, or PSLCs) [1-3] have shown considerable promise for liquid crystal display applications [4-6], in large part because of the polymer networks that form [7-10]. These networks have high surface areas and consequently tend to stabilize liquid crystal order efficiently, even at low concentration. There are now several experimental studies of the effects of various factors on the morphology of the networks [10-12]. For example, the networks evolve from dilute bead-like structures (see figure 1(a)) to dense, cross-linked fibrillar networks (see figure 1 (b)) as a function of curing time [12]. To date, however, little is understood theoretically about the factors that control the morphology of the networks. Understanding these systems is difficult because the fabrication of liquid-crystal/ polymer dispersions involves several nonequilibrium processes. These materials are typically made by photopolymerization of monomers dissolved in an ordered phase of the liquid crystal
(continued on page 2)

